calibrar: Automated Parameter Estimation for Complex Models

General optimisation and specific tools for the parameter estimation (i.e. calibration) of complex models, including stochastic ones. It implements generic functions that can be used for fitting any type of models, especially those with non-differentiable objective functions, with the same syntax as base::optim. It supports multiple phases estimation (sequential parameter masking), constrained optimization (bounding box restrictions) and automatic parallel computation of numerical gradients. Some common maximum likelihood estimation methods and automated construction of the objective function from simulated model outputs is provided. See <> for more details.

Version: 0.9.0
Depends: R (≥ 3.5.0)
Imports: BB, cmaes, DEoptim, dfoptim, GenSA, graphics, minqa, optimx, foreach, lbfgsb3c, parallel, pso, rgenoud, soma, stats, stringr, utils
Suggests: deSolve, ibm, knitr, rmarkdown, testthat (≥ 3.0.0)
Published: 2024-02-14
DOI: 10.32614/CRAN.package.calibrar
Author: Ricardo Oliveros-Ramos [aut, cre]
Maintainer: Ricardo Oliveros-Ramos <ricardo.oliveros at>
License: GPL-2
NeedsCompilation: no
Citation: calibrar citation info
Materials: README
In views: Optimization
CRAN checks: calibrar results


Reference manual: calibrar.pdf
Vignettes: Getting started with the 'calibrar' package


Package source: calibrar_0.9.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): calibrar_0.9.0.tgz, r-oldrel (arm64): calibrar_0.9.0.tgz, r-release (x86_64): calibrar_0.9.0.tgz, r-oldrel (x86_64): calibrar_0.9.0.tgz
Old sources: calibrar archive


Please use the canonical form to link to this page.