FPCdpca: The FPCdpca Criterion on Distributed Principal Component Analysis

We consider optimal subset selection in the setting that one needs to use only one data subset to represent the whole data set with minimum information loss, and devise a novel intersection-based criterion on selecting optimal subset, called as the FPC criterion, to handle with the optimal sub-estimator in distributed principal component analysis; That is, the FPCdpca. The philosophy of the package is described in Guo G. (2020) <doi:10.1007/s00180-020-00974-4>.

Version: 0.1.0
Imports: matrixcalc, Rdimtools, rsvd, stats
Suggests: testthat (≥ 3.0.0)
Published: 2024-05-27
DOI: 10.32614/CRAN.package.FPCdpca
Author: Guangbao Guo [aut, cre, cph], Jiarui Li [ctb]
Maintainer: Guangbao Guo <ggb11111111 at 163.com>
License: Apache License (== 2.0)
NeedsCompilation: no
CRAN checks: FPCdpca results


Reference manual: FPCdpca.pdf


Package source: FPCdpca_0.1.0.tar.gz
Windows binaries: r-devel: FPCdpca_0.1.0.zip, r-release: FPCdpca_0.1.0.zip, r-oldrel: FPCdpca_0.1.0.zip
macOS binaries: r-release (arm64): FPCdpca_0.1.0.tgz, r-oldrel (arm64): FPCdpca_0.1.0.tgz, r-release (x86_64): FPCdpca_0.1.0.tgz, r-oldrel (x86_64): FPCdpca_0.1.0.tgz


Please use the canonical form https://CRAN.R-project.org/package=FPCdpca to link to this page.